Fatigue detection using decision tree method based on PPG signal
Main Article Content
Abstract
Fatigue is a complex psychophysiological condition marked by sleepiness or fatigue, poor performance, and a range of physiological changes. A decision tree may be used to categorize weariness based on the subject's heart rate data. To begin the experiment, a dataset of the heart rate signal was obtained. The signal has already undergone preprocessing. The feature obtained through preprocessing is then used to construct the decision model. Four traits were discovered. The HF power, LF power, normalized HF power, and normalized LF power are the characteristics. This research has a 75.94% accuracy rating. The precision, recall, and F-measure scores for this study were 0.736, 0.736, and 0.736, respectively.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work