Machine Learning Method to Predict the Toddlers’ Nutritional Status
Main Article Content
Abstract
Malnutrition is one of the leading health problems experienced by toddlers in various countries. Based on the 2022 Indonesian Nutritional Status Survey results, malnutrition in children under five in Indonesia is higher than the average malnutrition in Africa and globally. Therefore, a way is needed to predict the nutritional status of children under five early and quickly so that the Government (through District Health Office) can immediately provide the necessary treatment. This study aims to predict or classify the toddlers’ nutritional status based on age, body mass index (BMI), weight, and body length using various machine learning (ML) methods, namely naïve Bayes, linear discriminant analysis, decision tree, k-nearest neighbor, random forest, and support vector machine. The predictive performance of each ML method was evaluated based on accuracy, sensitivity, specificity, the area under curve, and Cohen's Kappa coefficient. The test results show that the RF method is the most recommended for predicting toddlers' nutritional status. The study's contribution is to obtain information about toddlers' nutritional status easier.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work